Development of an Ultra-Sensitive Magnetic-Based Biosensor; a Simulation Study

dc.authorscopusid57202966631
dc.authorscopusid56194505100
dc.authorscopusid57194340152
dc.authorscopusid37071971700
dc.authorscopusid57201916047
dc.authorscopusid36871460900
dc.contributor.authorYahya, Khalid
dc.contributor.authorHusseini, Abbas Ali
dc.contributor.authorDirican, Onur
dc.contributor.authorAttar, Hani
dc.contributor.authorAldababsa, Mahmoud
dc.contributor.authorHafez, Mohamed
dc.date.accessioned2024-09-11T19:58:58Z
dc.date.available2024-09-11T19:58:58Z
dc.date.issued2023
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.description2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence, EICEEAI 2023 -- 27 December 2023 through 28 December 2023 -- Zarqa -- 201143en_US
dc.description.abstractThis study presents an advanced magnetic biosensor design incorporating an L-shaped ferromagnetic core with UL dimensions and an air gap replaced by highly porous aluminum or copper foam later-filled biological samples containing high-permeability ferromagnetic nanoparticles. The sensor detects specific biological molecules through magnetic field interactions. The system's electrical parameters were methodically optimized for enhanced performance. The research investigated the impact of various materials on the air gap's magnetic properties and assessed the relationships between permeability, output-induced voltage, input voltage, and input frequency. Findings indicate that using materials with higher magnetic permeability, such as Magnetite (Fe304) or Cobalt ferrite (CoFe2O4) ferrofluids, considerably improved the biosensor's performance by optimizing magnetic coupling between primary and secondary windings. This innovative magnetic biosensor holds potential for diverse applications, including medical diagnostics, environmental monitoring, and industrial process control. The study offers valuable insights into magnetic biosensor design and optimization, facilitating heightened sensitivity and selectivity in detecting target molecules. © 2023 IEEE.en_US
dc.identifier.doi10.1109/EICEEAI60672.2023.10590267
dc.identifier.isbn979-835037336-3en_US
dc.identifier.scopus2-s2.0-85200012608en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/EICEEAI60672.2023.10590267
dc.identifier.urihttps://hdl.handle.net/11363/8601
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence, EICEEAI 2023en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240903_Gen_US
dc.subjectFerromagnetic material; Infectious diseases; Magnetic biosensor; Sensitivityen_US
dc.titleDevelopment of an Ultra-Sensitive Magnetic-Based Biosensor; a Simulation Studyen_US
dc.typeConference Objecten_US

Dosyalar