Thermogravimetric Study of Maize Cob Carbonization for Bioenergy Recovery: Product Yield Estimation and Bio-Energy Potentials

dc.authorscopusid57216969435
dc.authorscopusid57224361422
dc.authorscopusid57193837586
dc.authorscopusid56181545700
dc.authorscopusid56035184600
dc.authorscopusid55756901000
dc.contributor.authorOtitolaiye, Victor Olabode
dc.contributor.authorOjomoh, Victor Kayode
dc.contributor.authorMahmoud, Abubakar Sadiq
dc.contributor.authorBashir, Faizah Mohammed
dc.contributor.authorAudu, Jemilatu Omuwa
dc.contributor.authorDodo, Yakubu Aminu
dc.date.accessioned2024-09-11T19:57:43Z
dc.date.available2024-09-11T19:57:43Z
dc.date.issued2021
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.description.abstractThe study investigated the bulk fuel, microstructure, morphological, mineral, and functional group characteristics of maize cobs (MC) along with carbonization through thermogravimetric analysis (TGA) for potential energy recovery. To the best of the authors’ knowledge, this is the first study on the micro-scale analysis of the fuel properties and bioenergy recovery potential of MC in the scientific literature. The results showed that MC contains high carbon, hydrogen, oxygen, volatile matter and fixed carbon but low moisture, and ash contents. The functional group (FTIR) analysis revealed MC contains alcohol, ester, and carbonyl functional groups in its chemical structure, which could be attributed to the lignocellulose components of biomass. The analysis of MC microstructure and morphology showed a rough yet compact surface comprising fibres. The TGA carbonisation process revealed MC experienced significant mass loss (ML) ranging from 73–76%, whereas the residual mass or mass yield (RM or MY) was from 23.6–27.2% with increasing carbonisation temperatures from 450–650°C. Furthermore, the findings indicated that the optimal temperature for carbonization of MC is 550°C, based on the conditions examined in this study. The HHV of the solid MY ranged from 26.66 – 26.99 MJ/kg, whereas the energy yield (DE) was 95.42 – 95.63%, and energy density (DE) 3.52 – 4.04. The findings indicate that while the HHV and EY increased, the MY and EY decreased with increasing carbonisation temperatures. In general, the study demonstrated that MC is a potentially suitable raw material or biomass feedstock for the sustainable recovery of bioenergy through carbonization. © 2021. All Rights Reserved.en_US
dc.identifier.endpage492en_US
dc.identifier.issn1337-7027en_US
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85107440410en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage483en_US
dc.identifier.urihttps://hdl.handle.net/11363/8342
dc.identifier.volume63en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSlovnaft VURUP a.sen_US
dc.relation.ispartofPetroleum and Coalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240903_Gen_US
dc.subjectBiomass; Carbonization; Energy recovery; Maize cobs; Thermogravimetryen_US
dc.titleThermogravimetric Study of Maize Cob Carbonization for Bioenergy Recovery: Product Yield Estimation and Bio-Energy Potentialsen_US
dc.typeArticleen_US

Dosyalar